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Abstract. We study the quantitative effects of excitation, ionization, radiation energy and pressure, on the
jump conditions in hypersonic shocks in a real gas. The ionization structure and excitation energies are
calculated from the local temperature and density, using the Screened Hydrogenic Model. We assume an
optically thick medium and no radiation flux through the shock front. We investigate the jump conditions in
different gases and propose a phenomenological description of compression for different shock velocities. We
find that the excitation energy term is the dominant term in ionized gases at low velocities. Consequently,
higher shock velocities than the values predicted by standard calculations in a perfect gas must be reached
in order to observe the effects of radiation in the compression ratio. Our results provide constraints for the
design of future radiative shock experiments on the next generation of powerful nanosecond lasers or on
Z-pinches.

PACS. 52.35.Tc Shock waves and discontinuities – 95.30.Dr Atomic processes and interactions –
95.30.Lz Hydrodynamics

1 Introduction

Radiative shocks are strong hypersonic shocks. Due to gas
heating in the shock, atoms and molecules are excited,
dissociated, ionized and, as a result, they radiate away
some of the absorbed energy. The radiation travels faster,
ahead through the shock front, and heats the unshocked
media creating a radiative precursor. The presence of a
radiative precursor often is the criterion which refers the
shock as radiative. The total optical depth of the medium
in which radiative shocks occur determines the detailed
structure of the shock (see, e.g. [1]). Several characteristic
regions could be distinguished in a radiative shock oc-
curring in an optically-thin, or moderately optically-thick
plasma. As mentioned above, the main characteristic zone
is the radiative precursor. Just after the precursor, we find
several zones where different equilibria are achieved: (1)
the kinetic equilibrium for each species of particles, (2) a
zone where the electronic temperature comes to equilib-
rium with the ionic temperature, and possibly (3) a zone
where radiative equilibrium is achieved. Large departures
from the Local Thermodynamic Equilibrium (LTE) are
thus a typical feature of the shock region in optically thin
plasmas. Conversely, the situation of optically-thick me-
dia is much simpler: the temperature remains roughly con-
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stant in the shock region, and tends to decrease slightly
in the radiative precursor. In astrophysical conditions, ra-
diative shocks occur in a wide variety of objects, at very
different densities, hence in media with very different to-
tal optical depths. Examples include shocks in supernova
remnants, in atmospheres and envelopes of pulsating stars
[2–4], in accretion processes during star formation [5], and
in exploding supernovae [6], ranging from (very) small to
(very) large total optical depths. With the exception of
the latter case, departures from LTE and radiative cool-
ing are major drivers of the shock structure, in particular
of the compression ratio.

Shocks and related discontinuities are a difficult nu-
merical problem to solve in radiation hydrodynamics. It
is therefore crucial to validate the computer codes which
are applied to model astrophysical objects or laboratory
plasmas. A major goal of recent experimental work is
thus to provide benchmarks for radiation hydrodynam-
ics codes [7]. Particular attention has been recently de-
voted to the experimental study of 2-D and 3-D expanding
blast waves [8–10] and 1-D radiative shocks [11–13]. They
show strong hydrodynamical discontinuities and radiative
precursors. These experiments require high-power energy
installations like high-power lasers or Z-pinches. The hy-
drodynamics and geometry of these shocks are quite differ-
ent: the blast waves follow a point-like explosion induced
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by intense ultra-short lasers. The front shock decelerates
with time and can never be stationary. On the other hand,
1-D radiative shock experiments are conducted with high-
energy lasers with longer duration pulses. The front shock
velocity remains nearly constant. A radiative precursor de-
velops ahead of the shock front, at higher velocities. The
duration of the laser pulses generally remains too short to
reach the stationary limit in the whole shock structure.

The eventual goal is to reach a regime where the whole
shock structure is dominated by radiation. This objective
requires to drive a shock at higher velocities than val-
ues reached in present experiments, as well as to reach
the optically-thick limit. These conditions are hard to
fulfill experimentally nowadays. The limited total optical
depths in current experimental settings imply that radia-
tive shock structures in the laboratory are more or less
dominated by radiative losses.

In order to design such fully radiative 1-D shock exper-
iments, Bouquet et al. [14] developed an analytical model
of stationary radiative shocks, assuming a perfect gas,
one-dimensional geometry, large total optical depth, LTE
and the diffusion approximation to describe the radiation
transport. Relevant to the experimental set-up, Bouquet
et al. showed that shocks are more radiative when the
ambient medium is at low pressure and is constituted of
heavy gas, for example xenon. Following the usual ap-
proach in radiation hydrodynamics, Bouquet et al. as-
sumed a perfect gas, neglecting thus the excitation and
ionization of the gas. In an experimental set-up to pro-
duce radiative shocks, xenon will be ionized several times
and a significant fraction of the mechanical energy may
therefore be used to excite and ionize the gas. This effect
may actually dominate the radiation effect.

In this paper, we revisit the assumption of the per-
fect gas, quantitatively estimating the effect of excita-
tion and ionization, and of radiative energy and pressure,
on the post-shock conditions. We model radiative shocks
for different initial conditions. We solve the Generalized
Rankine-Hugoniot (GRH) relations for ionized gases, ac-
counting for radiative energy and radiation pressure as-
suming LTE. Whereas the basic equations were already
written down by Zel’dovich and Raiser [15], only limited
computations for special cases were previously reported.
For example, the effect of radiative energy and pressure
was studied for perfect gases by [16] and later by [14]; the
effect of excitation and ionization was reported on for spe-
cific gases, like nitrogen and oxygen gases [17] but without
radiation effects, or for hydrogen at high shock velocities,
including radiative effects [18]. However, no extensive and
quantitative calculations were performed to explore the
role of radiation in real gases in different conditions. Our
study complements the work of Nieuwenhuijzen et al. [19],
who proposed a way to resolve the GRH relations using a
tabulated Equation of State (EOS). Our approach differs
in that we calculate relevant atomic quantities on-the-fly,
and focus primarily on deriving the conditions for differ-
ent gases where radiation plays a role through the shock
front. We adopt a relatively simple atomic description, the
Screened Hydrogenic Model [20,21], which is a reasonable

description for multiple-charged rare gases. We choose to
focus our study on rare gases because they can be eas-
ily handled in experimental conditions. In astrophysical
settings, hydrogen is the most important case. We will
consider a detailed atomic and molecular description of
hydrogen in a subsequent paper.

Our assumptions are as follows: large total optical
depth, with very small photon mean path and thus
negligible radiative flux; LTE; stationarity; one-dimension
geometry; pure gases; and no magnetic fields. Our model
therefore provides the conditions in the post-shock region
relative to the initial conditions in the pre-shock region,
that is essentially the compression ratio. We aim at assess-
ing the effect of excitation, ionization, and radiation, on
this compression ratio, but not at describing the detailed
structure of the shock. This model should not be applied
blindly to astrophysical or experimental settings where
the total optical depth is generally not as large as as-
sumed here, where the radiative flux might be important,
and LTE breaks down in the shock region. Our intention
is to keep the model simple as to assess the assumption
of perfect gas made in most radiation hydrodynamics cal-
culations. For real gases, we will indeed show that the
compression ratio is significantly modified and that the ra-
diative effects in the compressed gas arise at higher shock
velocities. In the next stage, we will use this model as
the starting solution of a more realistic model of radia-
tive shocks that include a detailed treatment of radiation
transport and departures from LTE.

This paper is organized as follows. In Section 2, we
present the Generalized Rankine-Hugoniot relations which
include the radiation energy and pressure terms. The
atomic model adopted for calculating the relevant micro-
scopic quantities is described in Section 3. The characteris-
tics of shocks in various gases is presented in Section 4, and
the radiative effects are further discussed in Section 4.3.

2 Jump relations

In this section, we introduce the Generalized Rankine-
Hugoniot equations which include the contributions of ra-
diation energy, Erad , and pressure, Prad . These equations,
derived for a stationary 1D shock, give the hydrodynam-
ical quantities ahead and behind the shock discontinu-
ity [15]. We first apply these equations to the case of a
perfect gas with polytropic index γ.

Hereafter, ρ is the volumic mass density, Pth the ther-
mal pressure, T the temperature, and h the massic en-
thalpy. We write the three usual continuity equations
(mass, momentum and energy) in a coordinate system
that moves with the shock front, at the velocity −u1

ρ2u2 = ρ1u1 (1)

ρ2u
2
2 + Pth2 + Prad2 = ρ1u

2
1 + Pth1 + Prad1 (2)

ρ2u2

[
h2 +

1
2
u2

2

]
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1
2
u2

1

]
+ u1 [Prad1 + Erad1 ] (3)
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where the indices 1 and 2 stand for the unshocked and
shocked parts of the gas, respectively. Therefore, u1 is the
velocity of the unshocked matter relative to the shock
front. The contribution of the radiative fluxes are ne-
glected, because we solve for quantities far from the shock
front in an optically-thick medium. The radiation energy
and pressure are taken at radiative equilibrium. This ap-
proximation is only correct at high densities when the
opacity is large and the diffusion approximation is valid
for the radiative flux [1]. We assume this approximation as
an initial description for this paper, deferring an improved
treatment of the radiative transfer from the shock to the
precursor to a future paper. In our description, we have

Prad =
1
3
Erad =

1
3
arT

4. (4)

2.1 Perfect gas case

In the case of a polytropic perfect gas, the thermal pres-
sure and the enthalpy are respectively given by

Pth = ρ
RT

A
and h =

γ

γ − 1
ρ
RT

A
(5)

where A is the atomic mass of the gas, and the molar
gas constant R is related to the Boltzmann constant k,
and to the number n of particles per unit of volume by
R = nkA/ρ. The preceding equations then become

ρ2u2 = ρ1u1 (6)

ρ2u
2
2 + ρ2

RT2

A
+

1
3
arT

4
2 = ρ1u

2
1 + ρ1

RT1

A
+

1
3
arT

4
1 (7)

ρ2u2

[
γ

γ − 1
ρ2

RT2

A
+

1
2
u2

2

]
+ u2

4
3
arT

4
2 =

ρ1u1

[
γ

γ − 1
ρ1

RT1

A
+

1
2
u2

1

]
+ u1

4
3
arT

4
1 . (8)

The Mach number M is the ratio of the shock speed u1

to the sound velocity in the unshocked material, which is
given for a perfect gas by

vs,perf =

√
γRT

A
, (9)

that is vs,perf = 13 km s−1 for kT = 1 eV, γ = 5/3, and
A = 1 g/mol (atomic hydrogen gas).

As described by Bouquet et al. [14], the variations of
the compression ratio with the shock velocity u1 show a
plateau close to the asymptotic compression ratio with-
out radiation, ρ2/ρ1 = (γ + 1)/(γ − 1) (i.e., ρ2/ρ1 = 4
for γ = 5/3). At higher shock velocities, radiative ef-
fects appear and the compression ratio increases towards
the theoretical asymptotical limit of 7. This is illustrated
in Figure 1 for hydrogen, assuming an initial density
ρ1 = 5×10−4 g cm−3 and different initial temperatures T1.

Fig. 1. Compression ratio, ρ2/ρ1, and Prad/Pth for hydrogen,
considered as a perfect gas with γ = 5/3, for different initial
temperatures T1 (kT1 = 0.01 eV (dashed lines, squares), 0.1 eV
(diamond), 1 eV (dashed lines, triangles) and 10 eV (circles),
versus the shock velocity u1 in kms−1. The initial density ρ1

is equal to 5 × 10−4 g cm−3. The curves Prad/Pth for the dif-
ferent initial temperatures in bold are indistinguishable on the
graphic scale.

This figure shows together the compression ratio ρ2/ρ1

and the ratio of radiative to thermal pressure.
The shock velocity, u1 = urad , for which the radiative

and thermal pressures are equal is independent of γ and
is given by [14]:

urad = 77/6

(
R

A

)2/3 (
ρ1

ar

)1/6

. (10)

This relation is valid at high Mach number (thus for a
compression ratio close to 7). For hydrogen and an initial
density of ρ1 = 5× 10−4 g cm−3, we note indeed that urad

is usually independent of the initial temperature T1. We
choose initial conditions ρ1 and T1 that correspond to
the experimental conditions in xenon [11]. The variations
of urad with the initial temperature will be discussed in
Section 4.3.

In Figure 2, we report the variations of the tempera-
ture T2 in the shocked gas versus the shock velocity. This
temperature varies, as indicated in [14], as u2

1 at low veloc-
ities and as u

1/2
1 at high velocities, whereas it would also

vary as u2
1 at high velocities if the radiative terms were ne-

glected. Radiative effects reduce the heating of the gas at
high shock velocities. In Figure 3, we show the variation
of the compression ratio and the ratio of radiative to ther-
mal pressures for hydrogen and xenon versus the shock
velocity for the same initial density (5 × 10−4 g cm−3)
and kT1 = 10 eV. At each velocity u1, we verify that
the radiative effects are larger in xenon than in hydro-
gen: Prad/Pth is larger in xenon by about two orders of
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Fig. 2. Same as Figure 1 for the temperature T2 (in eV) of
the compressed gas.

Fig. 3. ρ2/ρ1 (circles) and Prad/Pth (squares) versus the shock
velocity u1 (km s−1) for hydrogen (full line, full markers) and
xenon (dashed line, empty markers), both considered as perfect
gases with γ = 5/3, for an initial temperatures kT1 = 10 eV
and density ρ1 = 5 × 10−4 g cm−3. The two compression ratio
curves converge towards 7 at high shock velocities.

magnitude, which follows from the higher atomic mass of
xenon (A = 131). The kinetic energy is larger at a given
velocity for the heavier element, resulting in more warm-
ing and in larger radiative effects.

From this simple description of a radiative shock in a
perfect gas, we conclude that the radiative effects mod-
ify the shock structure at high shock velocities, enhancing

the compression ratio on one hand, and changing the de-
pendency of the shocked gas temperature with the shock
velocity (in u

1/2
1 instead of in u2

1 without radiative ef-
fects) on the other hand. In this approach, the radiative
effects (quantified by the ratio Prad/Pth) are predicted
to be larger for heavier gases (at constant initial volumic
mass density).

This description assumes that the mechanical energy
taken from the piston is used to compress and heat the gas.
It neglects the competitive effect of excitation and ioniza-
tion processes which may also take a large fraction of the
mechanical energy, resulting in a lesser increase of tem-
perature and smaller radiative effects (which vary as T 4).

2.2 Generalized Rankine-Hugoniot for ionized gas

We now consider the case of an atomic gas (atomic num-
ber Z) which can be partially ionized. We denote by 〈Z〉
the mean ionization stage which is also the ratio of the
number of electrons to the number of ions. The excitation
energy per atom is denoted by εexc. We adopt hereafter
the energy of the fully ionized isolated element as the ref-
erence “zero” energy. Let α and i denote the ionization
stages (0 for neutral, Z for the fully ionized atom) and
atomic levels, respectively. Finally, let Pα,i be the frac-
tion of species in ionization stage α and atomic state i
having also energy Eα,i. One has

〈Z〉 =
∑

α=0,Z
αPα,i (11)

εexc =
∑
α,i

Pα,iEα,i. (12)

The level populations Pα,i are derived from Boltzmann
statistics assuming LTE.

The thermal pressure can be decomposed into ionic
and electronic contributions. The ratio between these
two contributions is equal to 〈Z〉. The enthalpy now in-
cludes the contribution due to the excitation energy, εexc.
One has
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RT

A
(1 + 〈Z〉) (13)
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5
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A
(1 + 〈Z〉) + εexc. (14)

The three-equation system therefore becomes
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We recall that 〈Z〉 and εexc both depend on ρ and T ,
and are calculated for each necessary couple (ρ, T ) used
during the solution process. Consequently, the equations
are strongly nonlinear, and one needs to build an iterative
algorithm that uses convergence criteria which automati-
cally adapt to the stiffness of the system.

The differences between the cases of perfect and ion-
ized gas come from the ionization degree and excitation
processes that appear in the 〈Z〉 and εexc terms. We shall
illustrate the role played by these two contributions. Our
aim is to derive the general trends due to both the radia-
tion and the ionization effects in the generalized Rankine-
Hugoniot equations. In an initial stage, we use simple ef-
ficient procedures to compute the excitation energy and
the equation of state. In particular, the equation of state is
given by the perfect gas law. This approximation is valid
for a large range of density and temperature conditions,
but fails at high densities. This issue may concern the
conditions in the shocked gas at very high shock velocities
and/or at high initial densities. However, at high shock
velocities, the radiation effects tend to dominate the ther-
mal pressure, and the details of the equation of state are
therefore not important. The resulting effects of departure
from the perfect gas equation of state will be discussed in
a future paper. The goal of this work is to highlight the
radiative effects and the importance of microscopic param-
eters on the shock structure, resulting in large differences
in the compression ratios between a perfect gas and a more
realistic gas where ionization is taken into account.

3 Atomic physics

This study concerns pure atomic gases like hydrogen, he-
lium, neon, argon, krypton and xenon, which are good can-
didates for laboratory experiments. Among these gases,
hydrogen is very interesting for two reasons. First, many
radiative shocks occur in astrophysics, and hydrogen is
the dominant cosmic species. As radiation is treated in
the blackbody approximation, contributions from heav-
ier, less abundant species to the radiative flux, energy and
pressure are not relevant. Moreover, the equation of state
of such mixtures is close to the case of pure hydrogen.
Second, the simple atomic structure of hydrogen allows to
better understand the relevant physics before addressing
more complicated gases.

Throughout this paper, we adopt an ion-sphere model:
the Screened Hydrogenic Model (SHM) which allows us to
compute very quickly all necessary atomic quantities for
gases having a very large number of electrons. A more
detailed description provided by standard atomic pack-
ages requires impracticable computer time and memory
in our context. In the Screened Hydrogenic Model [20,21],
the bound electrons of the ion with nuclear charge Z are
distributed in shells characterized by the principal quan-
tum number n. The effects of the angular orbital mo-
mentum l are not included. The effects of exchange and
interactions between the electrons are included through
screening constants [22]. On average, the action on one
electron by the other electrons consists in a screening of

Fig. 4. Ionization energies versus the ionization stage for Ne,
Ar, Kr and Xe, calculated from SHM.

the nuclear charge. Each bound state is characterized by
an integer population of electrons in this state and by an
effective charge. Density effects are qualitatively incorpo-
rated by a simple model of lowering the ionization energy.
This model stipulates that the lowering of the ionization
energy is proportional to the number of ions in the consid-
ered ionic stage. For ionization stage α (0 for the neutral),
the ionization lowering energy is related to the volumic ρ
and atomic (A) masses as described in [23]:

∆Eα [eV] � 35 [eV cm] α
(
ρ

[
g cm−3

]
/A [g]

)1/3
. (18)

Initially, we have adopted the SHM due to its very ad-
vantageous coupling to hydrodynamics calculations. How-
ever, the predictions of spectroscopic quantities is then
only qualitative, and this model is not suitable to pre-
dict or interpret spectra, which is not our purpose here.
In future stages of our study, we plan to use an improved
atomic description for light elements and molecules that
are most important in astrophysical phenomena. At this
initial stage, however, detailed physical atomic models are
too unwieldy for our approach that aims at comparing var-
ious gases and the effects of the atomic mass.

To illustrate the SHM, the ionization energies of var-
ious ionization stages are reported in Figure 4 for differ-
ent rare gases. The Saha-Boltzmann equations allow us
to compute the ionization stage of the plasma. We have
tested the accuracy of this model for the computation of
the ionization stage against results obtained with more
accurate atomic physics, and we found an overall good
agreement.
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Fig. 5. Compression ρ2/ρ1 (thin solid line, full circles), ioniza-
tion 〈Z〉2 (diamonds), temperature T2 (thin solid line, inverted
triangles) in eV, Prad/Pth (thick) of the shocked hydrogen gas,
versus the shock velocity in kms−1, including radiation effects.
The quantities ρ2/ρ1, T2 and 〈Z〉2 are also reported when ra-
diation is neglected in the Rankine-Hugoniot relations (dashed
lines, empty markers). Initial conditions are kT1 = 0.1 eV and
ρ1 = 5 × 10−4 g cm−3.

4 Shock characteristics for ionized gases

4.1 Hydrogen

In Figures 5 and 6, we analyze the influence of the radia-
tion on the compression ratio, ρ2/ρ1, on the shocked tem-
perature T2, and on the ionization stage 〈Z〉2 for hydrogen.
We have assumed an initial density, ρ1 = 5×10−4 g cm−3,
and unshocked temperatures kT1 equal to 0.1 and 10 eV.

At kT1 = 0.1 eV, the effects of atomic structure are
very important, resulting in a peak of the compression ra-
tio of 10.5 for a shock velocity of 30 km s−1. The compres-
sion ratio curve is very different from the case of a perfect
gas (see Fig. 1). At higher temperature, we see that the
strong compression peak found at kT1 = 0.1 eV disappears
because the initial hydrogen gas is almost fully ionized. For
both initial temperatures, thermal and radiative pressures
are equal for a shock velocity, urad ≈ 1100 km s−1. When
the radiation pressure becomes larger than the thermal
pressure, the effects of the atomic structure on T2 disap-
pear, but they are still visible (less than 10%) in the com-
pression ratio. Generally, the shocked temperature, T2, is
less affected by atomic physics effects than the compres-
sion ratio. At high velocities, the compression ratio tends
towards a value of 7 instead of 4 when radiation is ne-
glected. The temperature of the shocked gas is lowered
when radiation is accounted for.

In Figure 7, we show that the atomic structure strongly
affects the compression ratio at 0.1 eV. With a compres-
sion peak of 10.5 at shock velocity of 30 km s−1, this curve

Fig. 6. Same as Figure 5 for kT1 = 10 eV.

Fig. 7. ρ2/ρ1 (thin line, full circles), ∆εexc/u2
1 (thin line, no

marker) in hydrogen as ionized gas, compared to ρ2/ρ1 (dashed
line, empty circles) in hydrogen as perfect gas. Initial condi-
tions: kT1 = 0.1 eV and ρ1 = 5 × 10−4 g cm−3.

differs significantly from the perfect gas curve. The com-
pression peak is attributed to the strong increase of the
excitation energy due to heating. This increase is also
present when radiation is neglected. At these shock veloci-
ties, the excitation energy dominates the enthalpy term in
equation (14). The radiation effects are negligible at these
velocities, and the dominant terms in the left member of
equation (17) are the excitation energy and the mechan-
ical term in u2

2. The increasing in ∆εexc = εexc,2 − εexc,1

is taken from the kinetic energy (lowering thus u2
2, see
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Fig. 8. ρ2/ρ1, 〈Z〉2, kT2 (eV) of the shocked gas, versus the
shock velocity in kms−1 for hydrogen at kT1 = 0.1 eV and
ρ1 = 5 × 10−4 g cm−3. These quantities are reported for two
atomic models of pure atomic hydrogen gas: detailed model
(full lines, full circles for ρ2/ρ1 and kT2, full diamonds for 〈Z〉2)
and SHM (dashed lines, no marker, empty diamonds for 〈Z〉2).

Eq. (17)); due to mass conservation (Eq. (15)), this re-
sults in increasing ρ2. The difference in excitation energy
(∆εexc × 96.4, in eV), normalized to u2

1 (u1 in km s−1) is
plotted together with the compression peak in Figure 7.
We note that the variations of the compression ratio and
excitation energy are qualitatively very similar.

In Figure 8, we illustrate the effects of the adopted
atomic model on the shock description for the low ini-
tial temperature (kT1 = 0.1 eV). We consider the case of
a pure atomic hydrogen gas, and we use both a detailed
model and the SHM. The detailed atomic model [24,25]
includes the effect of pressure ionization by the formalism
of level dissolution, and uses exact energies. The varia-
tions of different quantities, like ρ2/ρ1, T2, 〈Z〉2, occur in
the same range of velocities. The amplitude of the com-
pression peak differs between the two models with a value
of 6.5 at u1 = 60 km s−1 for the detailed atomic model,
while the compression ratio reaches a factor of 10.5 at
u1 = 30 kms−1 in the SHM. As expected, the differences
occur in the regime where hydrogen is partially ionized.
They are due to the qualitative description of the atomic
physics for hydrogen with an ionization energy of 9.7 eV
instead of 13.6 eV and to a qualitative inclusion of pressure
ionization effects in the SHM. The differences disappear
for larger initial temperatures, because the atomic physics
effects are much reduced. We have shown that the SHM
yields results in good qualitative agreement with a better
atomic description, and we postpone further discussion to
a future paper.

Fig. 9. ρ2/ρ1 (full circles, thin line), kT2 in eV (inverted
full triangles, thin line) in helium for initial conditions kT1 =
0.1 eV, ρ1 = 5× 10−4 g cm−3, versus shock velocity in kms−1,
with (full markers, full lines) and without (empty markers,
dashed lines) radiation. The ionization stage 〈Z〉2 is plotted
with diamonds. Prad/Pth is plotted in thick continuous line
and full squares.

4.2 Rare gases

We now turn to radiative shocks in rare gases, from he-
lium to xenon. In this section, we choose the same ini-
tial temperatures (low, 0.1 eV, and high, 10 eV) than
in hydrogen. We have also used the same initial density
(ρ1 = 5 × 10−4 g cm−3). We have adopted the SHM since
this atomic model is sufficient to describe qualitative be-
haviors of the shocked gas quantities, especially when con-
sidering radiative effects occurring at high temperatures,
thus at large shock velocities. We have tested the perti-
nence of this approximation of the atomic physics against
more detailed atomic models. We proceeded similarly than
for hydrogen. We found that differences are negligible at
high temperatures, whereas they are more important at
low shock velocities and low initial temperature. In this
case, the differences in compression ratio between SHM
and detailed atomic models remain for helium of the same
order than for hydrogen, and the differences decrease with
increasing atomic number.

We have solved the GRH relations and derived shock
characteristics for He, Ne, Ar, Kr and Xe. The correspond-
ing compression ratios and temperatures are displayed in
Figures 9, 11, 13, 15, 17 for the low temperature and 10,
12, 14, 16, 18 for the high initial temperature (10 eV), for
the ionized gas case, with and without radiation.

The helium case is very similar to hydrogen with a
peak in the compression at low temperature which van-
ishes at high temperature. This bump results from the
excitation of neutral helium at shock velocities below
100 km s−1 and from the excitation of He+ at shock
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Fig. 10. Same as Figure 9 for kT1 = 10 eV, ρ1 = 5 ×
10−4 g cm−3.

 

Fig. 11. Same as Figure 9 for Ne (kT1 = 0.1 eV, ρ1 = 5 ×
10−4 g cm−3).

velocities between 100 and 200 kms−1. At kT1 = 10 eV,
the mean ionization degree is about 1.5 at low velocities,
reaching the upper limit of 2 around 300 km s−1. There-
fore, the effect of excitation is strongly reduced for shock
velocities under 200 km s−1. It results that the compres-
sion ratio goes up almost monotonically towards the ratio
of 7 contrary to the case at kT1 = 0.1 eV where an emerg-
ing peak is visible in the compression rate, at velocities
under 200 kms−1.

To understand the complicate structures of the com-
pression ratios for other rare gases, it is necessary to con-

 

Fig. 12. Same as Figure 11 for kT1 = 10 eV, ρ1 = 5 ×
10−4 g cm−3. Prad/Pth curve, not displayed, is very similar to
the same curve in Figure 11.

Fig. 13. Same as Figure 9 for Ar (kT1 = 0.1 eV, ρ1 = 5 ×
10−4 g cm−3).

sider the details of the ionization energies (Fig. 4). The
ionization energies show jumps related to the ionic shell
structure (see an example in [26] for xenon). We might
thus expect that these jumps show up in the predicted
compression ratios.

As pointed out previously, the order of magnitude of
the excitation energy for the shocked gas is such that it
dominates the enthalpy in equation (17) and its variations
are directly reflected in the term, 0.5 × u2

2 of the same
equation. The ratio u2

2/u2
1 = ρ2

1/ρ2
2 follows the variations

of ∆εexc/u2
1. This can been seen for example in Figure 19,
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Fig. 14. Same as in Figure 13 for T1 = 10 eV, ρ1 = 5 ×
10−4 g cm−3. Prad/Pth curve, not displayed, is very similar to
the same curve in Figure 13.

Fig. 15. Same as Figure 9 for Kr (kT1 = 0.1 eV, ρ1 = 5 ×
10−4 g cm−3).

where we have plotted the variations of the compression
ratio, ∆εexc/u2

1 in arbitrary units and 〈Z〉2 for krypton
at 0.1 eV. The three compression bumps at 7, 100, and
380 km s−1, are visible on the normalized excitation en-
ergy variation. They follow from the variations of ∆εexc
and u2

1, though the jumps in the variations of ∆εexc ver-
sus u1 are less pronounced. They are slightly visible in a
change of the slope of the corresponding curve.

In the minima, the excitation energy varies less rapidly
than u2

1, and the compression ratio therefore decreases.
This occurs when the gas becomes more difficult to ion-

 

Fig. 16. Same as Figure 15 for kT1 = 10 eV, ρ1 = 5 ×
10−4 g cm−3. Prad/Pth curve, not displayed, is very similar to
the same curve in Figure 15.

Fig. 17. Same as Figure 9 for Xe (kT1 = 0.1 eV, ρ1 = 5 ×
10−4 g cm−3).

ize/excite and is connected to the jumps in ionization steps
between atomic shells (see Fig. 4). For example, the first
peak for Kr in Figure 19 (kT1 = 10 eV) is associated to
the progressive ionization of the outer shell, n = 4, and
the second peak to shells, n = 3, and n = 2 (the configura-
tion of the ground state of Kr i is (1s2, 2s2, 2p6, 3s2, 3p6,
3d10, 4s2, 4p6). We can see in Figure 19 that the mean
ionization degree of Kr varies between 0 and 7 for shock
velocities from 1 to 35 km s−1, which corresponds to an
excitation/ionization of n = 4 shell. Let us note that it is
the mean ionization degree divided by four (〈Z〉2/4) which
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Fig. 18. Same as Figure 17 for kT1 = 10 eV, ρ1 = 5 ×
10−4 g cm−3. Prad/Pth curve, not displayed, is very similar to
the same curve in Figure 17.

Fig. 19. ρ2/ρ1 (full circles), 〈Z〉2 (full diamonds), normalized
excitation energy (∆εexc/u2

1) in krypton (no marker) for initial
conditions kT1 = 0.1 eV, ρ1 = 5 × 10−4 g cm−3, versus shock
velocity in km s−1.

is reported in the figure in order to fit the axis scale. The
second peak, between 35 and 200 km s−1 corresponds to
the variation of the ionization stage between 8 and 25 and
is associated to the n = 3 shell. The last small bump is
related to n = 2 and n = 1 shells, and is more pronounced
when radiation is accounted for.

In the energy range considered, the initial tempera-
tures are far below the necessary energy to fully ionize the
studied rare gases (i.e., 73 eV, 2121 eV, 9739 eV, 56482 eV

Table 1. Shock velocity urad (in kms−1) for which Pth =
Prad . Top, perfect gas (PG); bottom, ionized gas (IG). Initial
conditions are: kT1 = 0.1 eV, ρ1 = 5 × 10−4 g cm−3.

H He Ne Ar Kr Xe

urad (PG) 720 286 97 63 37 28

urad (IG) 1100 580 515 450 300 410

Table 2. uρ and uT at the same temperature and density for
different gases (kT1 = 0.1 eV, ρ1 = 5 × 10−4 g cm−3).

H He Ne Ar Kr Xe

uρ 450 300 300 250 250 200

uT 400 300 250 220 220 200

and 154090 eV, for He, Ne, Ar, Kr and Xe, respectively),
explaining therefore the strong influence of the excitation
energy.

4.3 Discussion

Different criteria may be defined to quantify radiation ef-
fects on macroscopic quantities in the shocked gas.

– A first possibility is the equality of thermal and radia-
tive pressures, which defines the velocity urad . Values
of this velocity are reported in Table 1 for the real and
perfect gas cases of the different species. In the case of
the real rare gas, we find that urad stays in the range
of 500 kms−1 with increasing atomic number. When
the criteria is lowered to Prad/Pth = 0.1, the veloci-
ties are equal, in the case of the ionized gas, to 490,
260, 270, 250, 210 and 180 for H, He, Ne, Ar, Kr and
Xe, respectively. They are approximatively smaller by
a factor of 2.

– Alternatively, we may determine the shock velocity uρ

for which the compression ratios ρ2/ρ1 differ by a given
factor (say 10%), if radiation is included or not in the
calculation.

– A final choice is to use the mimimum velocity, uT ,
for which the shocked temperatures T2 differ by 10%
when radiation is included or not in the calculation.
The corresponding velocities uT and uρ are reported
in Table 2 for an initial temperature of 0.1 eV and a
gas density of 5×10−4 g cm−3. These two quantities are
quite similar. They are smaller than urad and decrease
with increasing gas mass.

We now examine the variations of urad with the initial
temperature and density.

– From equation (10) derived for the case of perfect gas,
we expect that urad does not vary with T1. However,
the radiative effects in the unshocked gas should be-
come more important as temperature increases. When
the radiative pressure equals the thermal pressure in
the unshocked gas, urad will tend to zero because the
condition Prad/Pth = 1 is already satisfied at initial
conditions. The radiative pressure therefore dominates
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Fig. 20. Shock velocity urad in kms−1 for which Prad = Pth

for hydrogen (full lines) as a perfect gas (full circles) and as
a ionized gas (no marker) at 5 × 10−4 g cm−3, compared with
xenon (dot-dashed lines) as a perfect gas (full diamonds) and
as a ionized gas (no marker) at 5 × 10−4 g cm−3. Molecular
equilibrium of H is taken into account in the case of the ionized
gas.

the hydrodynamics before and after the shock. This
limit occurs for the perfect gas at a temperature, Tlim,
defined by

Tlim =
(

3ρR

aA

)1/3

, (19)

which corresponds to 220 eV for hydrogen and 43 eV
for xenon at ρ1 = 5× 10−4 g cm−3. This limit is larger
in the case of ionized gas. The corresponding variations
for hydrogen and xenon are reported in Figure 20.

– From equation (10), we note that urad varies as ρ1/6. In
Figure 21, we have studied numerically the variations
of urad with the initial density in the case of xenon at
kT1 = 0.1 eV. The two curves indicate a linear varia-
tion with ρ1/6, extending the relation obtained for the
perfect gas to ionized gases.

5 Conclusions

Radiation hydrodynamics calculations are generally per-
formed assuming a perfect gas. In this paper, we have de-
veloped a simple radiative shock model where we explore
extensively the differences between perfect and real gases,
namely the effects of excitation, ionization, radiation en-
ergy and pressure, on the jump conditions in hypersonic
shocks. We have assumed a large total optical depth, with
very small photon mean path and thus negligible radiative

Fig. 21. Variations with ρ1 of the shock velocity urad

in km s−1 in xenon as a perfect gas (thin line) and as a ionized
gas (thick line). Initial temperature is kT1 = 0.1 eV.

flux, LTE, stationarity, 1-D geometry, pure gases, and no
magnetic field. Our model thus provides the macroscopic
conditions in the post-shock region, far from the shock,
relative to the initial conditions. Compared to the perfect
gas case, we found that the excitation energy becomes the
dominant term in the ionized gas case, and directly af-
fects the compression ratio. Lower initial (pre-shock) den-
sities or higher initial temperatures result in larger ra-
diative effects that are best evidenced in the compression
ratio and in the shocked gas temperature. We have pre-
sented quantitative estimates for several rare gases which
are most often used in experimental settings. For exam-
ple, for xenon at an initial density of 5× 10−4 g cm−3 and
kT1 = 0.1 eV, we found that radiation effects dominate in
shocks with velocities larger than 120 km s−1. This limit
is significantly higher than the value predicted from the
Bouquet et al. model [14], assuming a perfect gas. This
conclusion is crucial in designing future radiative shocks
experiments, at energies which are large enough to tran-
scend the excitation and ionization of the gas. At these
high energies, shocks will be fully structured by radiation.
Such high energies and shock velocities will be reachable
with future high-power lasers (LIL, LMJ in France or NIF
in the USA), which will therefore provide the necessary
experimental setup to study radiative shocks.
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Scientific Highlights 2002, edited by D. Barret, F. Combes
(EDP-Sciences, Les Ulis, 2002), p. 543


